POSTSCRIPT™

Software From Adobe

Type 1 Font Format
Supplement

Adobe Developer Support

Technical Specification #5015

15 January 1994

Adobe Systems Incorporated

Corporate Headquarters Adobe Systems Eastern Region
1585 Charleston Road PO Box 7900 24 New England

Mountain View, CA 94039-7900 Executive Park

(415) 961-4400 Main Number Burlington, MA 01803

(415) 961-4111 Developer Support (617) 273-2120

Adobe Systems Europe B.V. Adobe Systems Japan

Office Centre Swiss Bank House 7F

Jozef Israélskade 48c 4-1-8 Toranomon, Minato-ku
1072 SB Amsterdam, Netherlands Tokyo 105, Japan
31-20-6767-661 03-3437-8950

PN LPS5015

Copyright[] 1994 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

Adobe, Acrobat, Adobe Originals, Adobe Type Manager, ATM, Minion, Myriad, PostScript, the Post-
Script logo, SuperATM and Vliva are trademarks of Adobe Syskecasporated which may be regis-

tered in certain jurisdictions. Macintosh and Personal LaserWriter are registered trademarks of Apple
Computer Incorporated. Hewlett-Packard and LaserJet are registered trademarks of Hewlett-Packard
Company. Windows is a trademark of Microsoft Corporation. All other brand or product names are
the trademarks or registered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice,
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty
of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any
and all warranties of merchantability, fitness for particular purposes and noninfringement of third
party rights.

Contents

List of Figures v
1 Introduction 1

2 Counter Control Hints 2
Performance and Quality Benefits of Counter Control Hinting 2
OtherSubrs for Counter Control 3
Stack Limit Considerations for Counter Control 5
Counter Control Groups 6
Private Dictionary Extensions for Counter Control: ExpansionFactor
Counter Control Example 7

3 Multiple Master Font Extensions 9
Multiple Master Design 9
Multiple Master Font Programs 11
Multiple Master Font Dictionaries 12
Explanation of a Typical Multiple Master Font Program 14
Multiple Master Keywords and Procedures 17
The makeblendedfont Procedure 19
The Multiple Master findfont Procedure 20
The NormalizeDesignVector Procedure 21
The ConvertDesignVector Procedure 21
Multiple Master Font Names 22
Multiple Master Charstring Representation 22
OtherSubrs for Multiple Master Font Programs 23
Sample Subrs Code for Calling OtherSubrs Procedures 25

4 Adobe Type Manager Compatibility 26
5 Font Program Testing 27
6 Errata 27

6

iv

Contents

Appendix A: The makeblendedfont Operator 29

Appendix B: Updated OtherSubrs Code for Flex and Hint Substitution 33
Appendix C: NormalizeDesignVector Example 37

Appendix D: ConvertDesignVector Example 39

Appendix E: Changes Made in Version 1.1 41

Index 43

(15Jan94)

Figure 1
Figure 2
Figure 3
Figure 4

List of Figures

Sample glyph with Counter Control hint zones 7

Multiple master font space arrangement 11

Arrangement of multiple master design space for a four axis font 11
Multiple master font dictionaries 13

Vi List of Figures (15 Jan 94)

Type 1 Font Format
Supplement

Introduction

This document describes extensions to the Adobgp¢ T font format since
versions 1.0 and 1.1, and serves as a complete supplement for both of these
versions. It also contains a list of errata in section 6 which is applicable to
both versions, and lists the updates made in version 1.1. It supersedes Adobe
Technical Note #5047, “Updates to the Adobe Type 1 Font Format” and
#5086, “Multiple Master Extensions to the Adobe Type 1 Font Format.”

This supplement describes two significant extensions to the Type 1 format:
Counter Contrb, a hinting mechanism for fonts with complex glyphs; and
the multiple master font format, which was previously describeddhrical
Note #5086, “Multiple Master Extensions to the Adogpd’l Font Format.”

The Counter Control hint mechanism is used for controlling the counters
(white spaces) in complex glyphs such as those contained in Chinese and Jap-
anese language fonts. These hints may also have other applications such as
for bar code or logo fonts.

A multiple master font contains from 2 to afaster designs a single font,
from which users may interpolate a large number of intermefdiate
instancesThis format, discussed in section 3, provides the potential for
unprecedented flexibility and control over typographic parameters.

In addition, the following appendices are included:

» Appendix A:makeblendedfont Code

» Appendix B: Update®therSubrs Code for Flex and Hint Substitution
» Appendix C:NormalizeDesignVector Example

» Appendix D:ConvertDesignVector Example

» Appendix E: Changes Made in Version 1.1

2

21

Counter Control Hints

The Counter Control hint mechanism controls counter spaces in a glyph. A
countermay be defined as an area of white space which is delimited by a pair
of horizontal or vertical stems. This mechanism is designed to aid in the ren-
dering of fonts containing complex glyph shapes by ensuring that the size and
proportions of all counters in a glyph are rendered as accurately as possible.
For example, if multiple counters are exactly the same measurement in width
or height, the Counter Control mechanism will make them the same number
of pixels, providing there are a sufficient number of pixels available. Simi-
larly, if the width of two counters in the original design are, for example, in
the ratio of 3:5, the interpreter attempts to preserve this proportion, based on
the constraints of the glyph’s width.

Counters may be organized irgmups with each group consisting of a sec-
tion of the glyph whose stems are to be considered in relation to each other
by the rasterizer. For a relatively simple glyph, for example, all horizontal
stems may be considered to be in a single group. For more complex glyphs,
putting all stems in a single group might overconstrain the grid fitting prob-
lem. Also, the ordering of the groups determines the priority for the alloca-
tion of pixels, which may be critical for lower resolutions. The grouping of
counters is discussed in section 2.4.

To use Counter Control hints, thenguageGroup andRndStemUp entries
(see page 44 of the Adobe Type 1 Format Book for more details) must be
defined as follows in therivate dictionary of the font program:

/LanguageGroup 1 def
/RndStemUp false def

and Counter Control hints, in the form of call€herSubrs entries 12 and
13, must be added to the appropriate charstrings as explained in section 2.2.

Performance and Quality Benefits of Counter Control Hinting

For fonts with complex glyphs, it is very important to include Counter Con-
trol hints; failure to do so can result in performance and quality degradation.
Some rasterizer implementations are able to control counters by making an
initial pass through the font to compile hint data, and a second pass to raster-
ize the glyphs. Thus the rasterizer supplies some of the Counter Control
hints, but at the cost of reduced performance. THe Pasterizer included in

some Level 1 Japanese PostScript printers, most Level 2 printers, and
ATM™-] software fall into this category.

(15 Jan 94)

Note There are two types of “two-pass” rasterizers: newer versions of the ATM-J

2.2

software and Level 2 printers will do only one pass if Counter Control hints
are in the font, thus improving performance, but are capable of doing two
passes if the hints amot in the font; earlier versions will do two passes even
if Counter Control hints are in a font (ignoring the data in the font).

Other rasterizers do not compile Counter Control data on-the-fly. With this
rasterizer, a font is likely to have unsatisfactory quality unless the Counter
Control hints are pre-compiled in the font program. The current version of
the Type 1 Coprocessor is in this category of one-pass rasterizers.

The advantage of including Counter Control hint information in a font pro-
gram is that the font will perform better on most two-pass rasterizers, and it is
the only way to control counter spaces with a one-pass rasterizer. Also, if
Counter Control hinting is pre-compiled into a font program, it is possible to
define more precise hints than if it is done at run-time by the rasterizer.

If a font does not contain complex glyphs, it is important for performance
reasons to not use hint settings which will cause a two-pass rasterizer to com-
pile Counter Control hints. Any of the following situations will cause a two--
pass interpreter to make an extra pass, whether or not it is required:

» The top edge of the firBlueValues hint zone is represented by a negative
number. This signifies that the first (baseline) zone is set to be outside of
the area of the character pafthis is one convention for representing
fonts which do not require vertical alignment zones).

* The keywordrndStemUp is defined in the font program. The value of the
Boolean does not make a differenceRiidStemUp is defined at all,
Counter Control is invoked regardless of the value.

* LanguageGroup is defined to have a value of 1.

» The charstrings contain calls@herSubrs entries 12 or 13.

OtherSubrs for Counter Control

Counter Control hints are specified usingdhiothersubr charstring opera-
tor. These operators will be interpreted directly by newer Type 1 BuildChar
procedures, but will be ignored by 2-pass rasterizers which will compile their
own Counter Control data at run-time.

For a rasterizer which does not know about Counter Control, the PostScript
language implementation of the Counter ContberSubrs only serves the
purpose of removing the Counter Control data from the stack so the data will
not accumulate. These procedures (which are shown below) do not imple-
ment Counter Control hints, they merely make a font backward-compatible
on older interpreters.

2 Counter Control Hints 3

As in theAdobe Vpe 1 Font Formabook, thestack bottom symb@l—) pre-
ceding the first gument means that thegaments are taken from the bottom

of the Type 1 BuildChar stack. Commands that clear the stack are indicated
by the stack bottom symbol{) in the result position of the command defi-
nition.

The followingOtherSubrs calls are used to invoke Counter Control hinting:

Counter Control OtherSubrs Entry 12

— A;A>A3z... A;n 12 callothersubr

whereA; throughA,, are arguments for declaring counter dats, the

number of aguments, and ‘12’ is th@therSubrs entry numberThe value of
nmust be intherange 0 n 22 (see section 2.3 for explanation of the stack
limit). OtherSubrs entry 12 is used to present Counter Control data to the
Type 1 BuildCharlt may be used to pass any number gliarents within the
stated limits, but it should be usefi@éntly as excess calls may significantly
affect file size and performance. A call to entry 12 implies that there is more
data to follow A sequence of one or more calls to entry 12 must be followed
by exactly one call to entry 13. Usually, arguments will be presented in
groups of 22 until there are 22 arguments or fewer, and the remaining argu-
ments then passed usi®therSubrs entry 13.

The data format is the same as@herSubrs entry 13, which is shown
below.

Counter Control OtherSubrs Entry 13

— A;AsA3z... Apnl3callothersubr

whereA, throughA,, are aguments for declaring counter datapecifies the
number of aguments, and ‘13’ is th@therSubrs entry numberThe value of

n must be in the range 0 n QRerSubrs entry 13 tells the interpreter that

all of the Counter Control data is on the stack and ready for processing. It
must be called exactly once for each glyph, and only after a sequence of zero
or more calls t@therSubrs entry 12. The data format for bathherSubrs

entries 12 and 13 follows.

Data Format for Counter Control OtherSubrs

The data format is:

— #HHG; HG, ... HG, #V VG VG5 ... VG, m 13 callothersubr —

(15 Jan 94)

Note

2.3

where#H is the number of stem groups (O if nongd; is the data for the
most important hstem group (Group 1), &#@, is the data for the least
important hstem group (Group. #V is the number of vstem groups (O if
none);VG; is the data for the most important vstem grou®,, is the data for
the least important group; andis the number of arguments being passed.

The PostScript language code containedtherSubrs entries 12 and 13 is
shown below. These two PostScript language procedures are not used for
backward compatibility, except in the sense that they remove data from the
stack when the interpreter does not understand Counter Control hints, or
when the interpreter can only do two passes. When an interpreter is capable
of only doing one pass, the data in the charstithgrSubrs calls are inter-
preted directly by the interpreter.

The code for the twOtherSubrs entries are as follows:

OtherSubrs entry 12:
{}

OtherSubrs entry 13:
{2{cvi{{popOlt{exit}if}loop }repeat}repeat}

Entry 12 does not clear data from the stack because any calls to entry 12 must
be followed by one call to entry 13, which does clear all elements from the
stack.

Some PostScript interpreters fail to execute the PostScript languzse
Subrs procedures. This is incorrect behaviour. This primarily affects the
Apple Personal LaserWrit8rNT and the Hewlett-Packafd_evel 1 Post-
Script Cartridge for LaserJ&tprinters. The likely consequence is that an
invalidfont error will occur, the fonts will not appear on the page, or the inter-
preter will fail.

Stack Limit Considerations for Counter Control

Since there may be more than 22 numbers required to define all group data,
and no more than 22 numbers may be on the type 1 stack widehean

Subrs procedure is invoked, the call@herSubrs entry 12 is used to

present arguments in groups of 22, until 22 or fewer arguments remain. This
final group is then passed usitherSubrs entry 13.

In all cases, the guments are placed on an internal pseudo &tagopping
arguments off the Type 1 stack and pushing them onto this internal pseudo
stack, and then finally processed by popping them off the internal pseudo
stack. This inverted order is a consequence of the requirementibgiossi-

ble to execute aype 1 font program with aype 1BuildChar procedure that
does not have direct support fotherSubrs . This mechanism provides the
PostScript language implementatimiranOtherSubrs procedure a means to

2 Counter Control Hints 5

2.4

2.5

determine the number of arguments that were passed to it. Note that it is not
possible, in general, for a PostScript languaderSubrs procedure to
know how many arguments were passed to it.

Counter Control Groups

A Groupis a list of coordinates for counters, delimited by stems of a single
orientation (either horizontal or vertical), that are to be adjusted relative to
each other. They are listed in ascending order (in character space) as pairs of
numbers. Each pair consists of a value for the left (or bottom) edge and the
width of the stroke, where the left (or bottoedge is encoded as the distance
from the previous stem, or the distance from zero (for the horizontal direc-
tion, the distance from the left sidebearing point) for the first entry.

Since the count of the number of stems in a group is not given, the sequence
is encoded by making the distance to the final stem extend to the far edge of
the stem, and then making the final width negative. For example, if the last
pair of numbers would ordinarily be *...2020...", it must be encoded as

...120 —20...". Not all stems in a glyph need be included; if one or more
counter spaces are judged to not need control, they may be omitted from the
Counter Control hinting.

The order of each group in the calling sequence determines the priority for
that group. This priority (for a group, not for individual counters) determines
the order in which the groups are allocated white space pixels. The order of
the groups can be determined algorithmically, or by a designer.

This prioritizing scheme gives the designer the ability to specify the groups
whose counters will be the last to “collapse” (have no white pixels) at small
sizes, and which will be more accurately rendered at intermediate sizes. This
has the potential to significantly improve quality and legibility at a range of
sizes. Even if the group order is not manually or algorithmically determined,
it is still much better to have Counter Control hinting than to not have it at all.

Private Dictionary Extensions for Counter Control: ExpansionFactor

The optionaExpansionFactor entry is a positive real number that gives a
limit for changing the size of a character bounding box during the processing
that adjusts the sizes of counters in fontsamiguageGroup 1. The default
value ofExpansionFactor is 0.06, which is equivalent to allowingt&%
change in the character bounding box. This change is allowed in both the x-
and y-directions, but might be constrained in the y-direction depending on
vertical alignment values specified in BlaeVvalues array.

(15 Jan 94)

At small point sizes or low resolutions, the system might have to accept irreg-
ular counters rather than violate this limit. Bar code or logo fonts containing
glyphs with multiple counters might benefit by settimgguageGroup to 1

and increasing thExpansionFactor limit to a larger amount such as 0.5 or
more. For example:

/ExpansionFactor 0.5 def

If strict adherence to the metrics is essential, the value should be set to zero.

Counter Control Example

The following is a simplified example of how Counter Control hints may be
applied to a glyph. Figure 1 shows a Kanji glyph and the coordinates of the
stems and counter boundaries. In this example, only the hinting most relevant
to Counter Control is shown; miscellaneous hints and hint substitution are not
addressed. Also, the ordering of the groupepsto-bottomandleft-to-right,

rather than being based on typographic significance.

Figure 1 Sample glyph with Counter Control hint zones

The horizontal stem hints for this example would be:

—44 58 hstem 273 25 hstem
155 25 hstem 430 25 hstem
445 25 hstem 582 25 hstem
703 25 hstem 735 25 hstem

2 Counter Control Hints 7

and the vertical stem hints would be:

86 60 vstem

281 60 vstem
430 60 vstem
670 60 vstem
790 60 vstem

Counter Control hinting involves dividing the counters which are delimited,
for example, by hstems, into groups which are to be considered at one time
by the rasterizer. In Figure 1, the hstems on the left side of the glyph form a
logical group, and those on the right side form a second logical group (stems
in a logical group do not need to be part of the same subpath).

Based on the stem data shown above and the chosen division of groups, the
corresponding data to describe the counters for each group would be (exclud-
ing the horizontal stem at44 and the vertical stem at 670):

2 155 25 265 25 258 -25 273 25 132 25 127 25 153 -25 1 86 60 135
60 89 60 360 -60

where #H = 2 (the number of hstem groups); HG1 = (155 25 265 25 258
—25); HG2 = (273 25 132 25 127 25 153 -25); #V = 1 (the number of vstem
groups); and VG1 = (86 60 135 60 89 60 360 —60). In this example, the ‘-60’
argument would end up on the bottom of the stack, and the ‘2" argument on
the top of the stack.

The hstem from-44 to 14, and the vstem from 670 to 730, are not included
in the Counter Control data. The hsterr4# does form a counter space

with the hstem above it, but it is omitted in this example. Reasons for omit-
ting a particular counter might include the judgement that its proportions are
not as critical as those of other counters, or that including it might overcon-
strain the problem.

Because using the above data gsiarents to aallothersubr call would put

more than 22 items (in addition to tB¢herSubrs entry number and the

number of arguments), on the stack, the call must be divided into two calls.
Allowing for the necessary stack order noted above, the calls would be as fol-
lows:

2526525 258-25273 251322512725 153 -251 86 60 135 60 89
60 360 -60 22 12 callothersubr

2 155 2 13 callothersubr

This command sequence is now ready for encoding.

(15 Jan 94)

3

Note

3.1

Multiple Master Font Extensions

The multiple master font format is an extension of the Type 1 font format
which allows the generation of a wide variety of typeface styles from a single
font program.

A multiple master font program contains two or more outline typefaces called
master designsvhich describe one or modesign axesThe master designs
that constitute a design axis represent a dynamic range of one typographic
parameter, such as theightor width. This range of styles is defined in a
multiple master font program by specifying one master design to represent
each end of an axis, such digat andextra-boldweight, as well as gn
intermediate master desigttsgat are required. The maximum number of
master designs allowed is sixteen.

Intermediate designs are not supported in the current version of Adobe Type
Managef" software: version 3.6.1 for the Macintosh, and 2.6 for Windows.

A font instanceconsists of a font dictionary derived from the multiple master
font program (or from another font instance). It contaiinge@ghtVector

array having values (that sum to 1.0) which specify the relative contribution
of each master design to the resulting interpolated design.

All derived font instances share t@karStrings dictionary andsubrs array

of the main multiple master font program, making it relatively economical to
generate a variety of font instances. Multiple master fonts can be made com-
patible with the installed base of PostScript interpreters by including several
PostScript language procedures and a settefrSubrs routines in the font
program. The procedures include the interpolation procejilead , the
makeblendedfont operator emulation procedure (see Appendix A), and a
re-definition of thdindfont operator (see section 3.7). The multiple master
relatedOtherSubrs procedures are used, along with $Bé&end procedure,

to interpolate the charstring data on-the-fly to produce the interpolated glyph
shapes specified in the font instance.

Multiple Master Design

It is possible to think of the master designs as being arrangedina 1, 2, 3, or 4
dimensional space with various font instances corresponding to different
locations in that space. The entries inkhetinfo dictionary specify what

this space is and where in that space the master designs are located. This
information is necessary for interactive programs that allow users to create
new font instances, and should be included in thed@dbbe Multiple Font
Metrics (AMFM) file (see “Adobe Font Metrics File Format Specification,”
Version 4.0).

3 Multiple Master Font Extensions 9

Multiple master coordinates are of two typessign coordinatesvhich rep-
resent the design space, dodeind coordinateswhich represent the blend
space.

Design coordinateare integers whose range for a particular typeface is
chosen by the designdrhey are used in font names and in the user interface
for software which creates and manipulates multiple master font programs.
The standard minimum and maximum values for a weight or width axis is
from 1 to 999 design units; however a typical typeface, with styles ranging
from light to black, might only have a dynamic range of from 200 (for light)
to 800 units (for black).

Note In the case of the Adobe Originals™ typeface Viva™, the range of design
coordinates has been extended to range from 1 to 2000. This is purely an
extension for a type design with a much wider width than most conventional
designs. Extending the width axis does not change the coordinates for
designs in the standard range.

Another type of axis isptical size in which the character design changes
with the point size to optimize legibility for each point size. The design coor-
dinates for the optical size axis might have a dynamic range of from 6- to
72-point, which represents the practical extremes of sizes for typefaces
designed for publishing purposes.

Blend coordinatesre normalized values, in the range of 0 to 1, which corre-
spond to the minimum and maximum design space coordinates for a specific
font. They are used by thgde 1 rasterizer because they are more convenient
for mathematical manipulations.

The mapping between the design and the blend coordinate space may be
specified to be non-linear by using BiendDesignMap entry (discussed
below) in the font dictionary. While the non-linear mapping may be used for
any axis, it is especially useful for tbgticalSize axis.

Figure 2 illustrates an example of the design space of a three axis multiple
master font. In this example, the axeswegght width, andoptical sizelt is
recommended that a font program be organized to have the lightest weight,
narrowest width, and smallest design size mapped to the origin of the blend
coordinate space.

(15 Jan 94)

Figure 2 Multiple master font space arrangement

Light
Expanded
Large
0,1,1
Black
Expanded
Large
1,1,1
Light Black
ExpasnncieatliI Expanded
< ; Small
0,1,0 | Light
2 Condensed | 11,0
& Large Black
2 0,0,1 Condensed
2 Large
o 1,0,1
(]
©
Light - - - Black
Condensed design axis 1: weight Condensed
Small Small
0,0,0 1,0,0

Figure 3 illustrates how a four axis design might be represented. An example
of a fourth axis would be a font with an axis for a typographic style (serif —
sans serif) or contrast (high/low: the ratio of thick to thin stem widths). This
diagram illustrates that if four axes are defined, sixteen master designs are
required. Also, since sixteen is the maximum number of designs allowed,
there can be no intermediate designs with four axes.

Figure 3 Arrangement of multiple master design space for a four axis font

3.2 Multiple Master Font Programs

Multiple master typefaces may contain from two to sixteen master designs,
which may be designed to represent from one to four design axes. The alloca-
tion of master designs within the sixteen master design limit is expressed by

3 Multiple Master Font Extensions 11

12

3.3

the equation 2+ x = 16, whera is the number of design axeds the
number of intermediate designs (though these are not currently supported by
ATM software), and 16 is the maximum allowed number of master designs.

The values used for calculating the weighted interpolation are stored in the
font dictionary in théveightV ector array The multiple master font program,
as shipped by the font vendor, can have a default setting fareigbtVec-

tor. It is recommended that it be set so the default font instance will be the
normal roman design for that typeface.

Multiple Master Font Dictionaries

Figure 4 shows a diagram of the dictionargamization of a multiple master
font program. A multiple master font containBland dictionary defined in
the unencrypted portion of the top level font dictiondiheBlend dictionary
contains an entry for the interpolated valuestontBBox , plus definitions
for two subdictionaries: Brivate and aFontinfo dictionary (also referred to
as thepPrivate blendandFontinfo blenddictionaries).

ThePrivate blend dictionary (defined in thgend dictionary) will only con-

tain those keywords found in the top lekélate dictionary which have dif-
ferent values for each master design. If the keywords do not have values that
must be interpolated for each instance, they do not need to bePirivtite
subdictionary. The keywords which might be required in the subdictionary
areBlueValues , OtherBlues , StdHW, StdVW, StemSnapH, StemSnapV ,

BlueScale , BlueShift , FamilyBlues , FamilyOtherBlues , andForceBold .

The values for therivate blend dictionary are expressed as an array with
one set of values for each master design; the topheivate dictionary con-
tains only single value entries (or set of values, as appropriate to the key-
word) which have been interpolated using\WebghtVector specified in the
font dictionary.

(15 Jan 94)

Figure 4 Multiple master font dictionaries

font dictionary

/Blend dictionary

/FontName name "] /FontBBoxX array
/WeightVector array —|/Private dictionary
/Blend dictionary /Fontinfo dictionary
/CharStrings dictionary
—1/Private dictionary
/Fontinfo dictionary
/$Blend procedure Fontinfo dictionary
: | /UnderlinePosition array
/UnderlineThickness array
/Fontinfo dictionary
> Iversion string Private dictionary
. | /Bluevalues array
: - /OtherBlues array
/BlendAxisTypes array -
/BlendDesignPositions _array
/BlendDesignMap array
/Private dictionary
/RD procedure
/Subrs array
/OtherSubrs array

/CharStrings dictionary

/A

charstring

/B

charstring

/.notdef

charstring

Similarly, theFontinfo blend dictionary will contain only keywords found in
the top leveFontinfo dictionary that do not have the same value in each
master design. The values for thederlinePosition , UnderlineThickness
andltalicAngle keywords are elements of an array with one value for each
master design. It is not necessary to include entries if their values are the

same for each design.

The representation of any dictionary entry inBfend dictionary (except
ForceBold), or in one of the subdictionaries under it, is defined by the fol-

lowing recursive rules:

Let “REP(k)” stand for the Blend dictionargpresentation for the entry k.

If k is a number, then REP(K) is the array of numbegs.[NN] that are

the values for the entry in the k master designs. If k is an array of n items
Vq ...\, of any type, then REP(K) is an array of the n representations
REP(V1) ... REP(Vn). If k is of any type other than number or array, then

REP(K) is K itself.

3 Multiple Master Font Extensions 13

3.4 Explanation of a Typical Multiple Master Font Program

Example 1 shows a sample multiple master font program for the Myriad™
typeface.

Example 1:

%!PS-AdobeFont-1.0: Myriad 000.009

%%CreationDate: Wed Jul 31 11:43:43 1991

%%VMusage: 69881 80580

15 dict begin

/Fontinfo 13 dict dup begin

Iversion (000.009) readonly def

/Notice (Copyright (c) 1991, 1992 Adobe Systems Incorporated. All
Rights Reserved.) readonly def

/FullName (Myriad) readonly def

/FamilyName (Myriad) readonly def

/Weight (All) readonly def

/ltalicAngle 0 def

[isFixedPitch false def

/UnderlinePosition -100 def

/UnderlineThickness 50 def

/BlendDesignPositions [[0 0] [1 0] [0 1] [1 1]] def
/BlendDesignMap [[[1 0.00][999 1.00]][[1 0.00][999 1.00]]] def
/BlendAxisTypes [/Weight /Width] def

end readonly def

/FontName /MyriadMM def

/Encoding StandardEncoding def

/PaintType O def

/FontType 1 def

/WeightVector [0.18 0.07 0.53 0.22] def

/$Blend {0.07 mul exch .53 mul add exch .22 mul add add } bind def
/FontMatrix [0.001 0 0 0.001 O O] readonly def
/FontBBox{-55.14 -220.84 1148.04 839.18 }readonly def
/Blend 3 dict dup begin

/FontBBox{{-52 -64 -58 -48 {-212 -216 -224 -222 {1000 1000 1100
1432 {828 850 830 867 }}def

[Private 14 dict def

end def

% makeblendedfont procedure omitted (see Appendix A)

currentdict end

%currentfile eexec

dup /Private 18 dict dup begin

/-|{string currentfile exch readstring pop}executeonly def
/|{noaccess deflexecuteonly def

/{noaccess put}executeonly def

/BlueValues[-11.00 0.00 667.00 685.00 483.48 494.48 650.00 660.56
710.00 720.56] def

/OtherBlues[259.46 264.90 -211.20 -200.64] def
/BlueScale 0.051208 def

/MinFeature{16 16} |-

/StdHW [67.01] |-

/StdVW [86.14] |-

/StemSnapH [67.01] |-

/StemSnapV [86.14] |-

(15 Jan 94)

/ForceBoldThreshold .57 def

/ForceBold false def

Ipassword 5839 def

3index /Blend get /Private get begin

/BlueValues[[-8 -8 -12 -12][0 0 0 0][664 664 668 668][682 682 636
686][480 492 480 492][488 500 492 504][650 650 650 650][658 658
662 660][692 692 716 716][700 700 728 726]] def

/OtherBlues|[258 258 262 255][263 263 267 262][-200 -200 -212
-222][-192 -192 -200 -212]] def

/BlueScale[0.052125 0.052125 0.052125 0.0479583] def
/ForceBold [false true false true] def

/StdHW [[37 108 39 146]] def

/StdVW [[43 155 49 189]] def

/StemSnapH [[37 108 39 146]] def

/StemSnapV [[43 155 49 189]] def

/OtherSubrs

[Rigigh
{

systemdict /internaldict known not

{pop 3}

{1183615869 systemdict /internaldict get exec

dup /startlock known

{/startlock get exec}

{dup /strtick known

{/strtick get exec}

{pop 3}

ifelse}

ifelse}

ifelse

} executeonly

IRt IRIRIRIRIZIRY

{4 1 roll $Blend } bind

{ exch 8 -3 roll $Blend exch 5 2 roll $Blend } bind

{3-1roll 12 -3 roll $Blend 3 -1 roll 9 -3 roll $Blend 3 -1 roll 6
3roll $Blend } bind

{4 -1roll 16 -3 roll $Blend 4 -1 roll 13 -3 roll $Blend 4 -1 roll
10 -3 roll $Blend 4 -1 roll 7 -3 roll $Blend } bind]-

This font program begins with an allocation of a dictionary with 15 entries,
one of which is the top lev€bntinfo dictionary. While thé=ontinfo dictio-

nary is generally optional, it is required for a multiple master font. In addition
to the standard entries, this dictionary includes three multiple master key-
words which define information about the axes, design space, and the map-
ping from the design to the blend coordinate space (see section 3.1).

The font dictionary also contains tiMeightV ector keyword which specifies

the contribution of each master design for the current font instance. Its value
is an array ok elements, wherkis the number of master designs. The ele-
ments must sum to 1.0 (with a tolerance of 0.001). It is recommended that the
WeightVector in a multiple master font program be set to represent the
normalstyle for that typeface.

3 Multiple Master Font Extensions 15

16

TheWweightV ector entry is followed by &Blend procedure which calculates
the weighted average of values from the master designs. It uses the values
specified by th&eightVector array, and is referenced byherSubrs

entries 14 through 18. This procedure should be of the following form for a
multiple master font program withmaster designs:

/$Blend { W mul add} bind def

wherew; is the second element in tieightVector array If there are more
than two master designs, the procedure should be of the form:

/$Blend { W mul exch
W mul add exch

W.; muladd
add } bind def

where thew, line (W; mul add exch) is repeated for i = 2 tfk—1) wherek is
the number of master designs.

After defining theFontMatrix , theFontBBox value is defined using either a
default value for the chosen default master design, or if it is a font instance, it
will have a value interpolated by theakeblendedfont procedure.

TheBlend dictionary is then defined, andrantBBox array containing a set
of values for each master design is defined in this dictionaPyivAte sub-
dictionary is then created, but no entries are defined until after the interpo-
lated entries in therivate dictionary have been declared (see section 4,
“Adobe Type Manager Compatibility”). This example does not hasana

tinfo subdictionary under thglend dictionary because the values for Myriad
are the same for all of the master designs.

The next section of code is the definition of tfekeblendedfont procedure.
This is included in the font for backward compatibility with interpreters in
which this operator is not defined (see section 3.6).

All of the remaining code in the example is in agec encrypted section of

the font. This includes the top levaidivate dictionary, with its interpolated
values based on theeightVector values in the font; and th&ivate blend
dictionary which was allocated and defined inBlend dictionary, but

whose entries are specified in this encrypted portion of the font program. The
entries in théPrivate blend dictionary contain arrays with one value for each
master design.

A ForceBold array may be included in tireivate blend dictionary of the
Blend dictionary. When this array is present, a new keyword, the keyword
ForceBoldThreshold must be included in the top levivate dictionary.
The value foiForceBoldThreshold is a number. If the sum of the

(15 Jan 94)

3.5

Note

WeightVector elements, for whicForceBold istruein the corresponding
multiple master font, is greater than or equadaeBoldThreshold , then
ForceBold istrue for the font instance with thaeightVvector .

ThePrivate dictionary continues with the global hint operators, which are the
same as for regular Type 1 font programs except that there is one value for
each master design. TheherSubrs array for Myriad includes null proce-

dures for the flex mechanisbtherSubrs , and includes th®&therSubrs

code for hint substitution. Next are ten null procedures before the code for
OtherSubrs entries 14 through18. In the case of Myriad, abtlyerSubrs

entries 14 through 17 are included because entry 18 (which returns 6 values)
is not used in this particular font program.

Multiple Master Keywords and Procedures

The following keywords are required entries in Hoatinfo dictionary of a
multiple master font (for which theontinfo dictionary is a required dictio-
nary).

BlendAxisTypes

(Required.BlendAxisTypes is an array of PostScript language names
wheren is the dimensionality of the design space and hence the number of
axes. Each string specifies the corresponding axis type. In the above 3-axis
example, this value would be:

/BlendAxisTypes [/Weight /Width /OpticalSize]
These three axes should always occur in this relative order.

The keywordéd/eight Width, andOpticalSizeare reserved for use as axis
types for multiple master font programs. Font developers interested in regis-
tering new types for additional design axes should write to:

UniquelD Coordinator

Adobe Developer Relations
Adobe Systems Incorporated
P.O. Box 7900

Mountain View, CA 94039-7900

BlendDesignPositions

(Required.BlendDesignPositions is an array ok arrays giving the loca-

tions of thek master designs in the blend space. Each location subarray has
numbers giving the location of the design in thdimensions of the design
space, with a minimum value of zero and a maximum value of one. The order
of the entries in the array must be the order of the corresponding master
designs in the font.

3 Multiple Master Font Extensions 17

18

Note

Table 1 shows an example of a font with eight master designs based on the
example shown in Figure 3.

Table 1

Design label Blend space coordinates
design 1: light condensed small 00O

design 2: light expanded small 010

design 3: black condensed small 100

design 4: black expanded small 110

design 5: light condensed large 001

design 6: light expanded large 011

design 7: black condensed large 101

design 8: black expanded large 111

TheBlendDesignPositions array for this font would be:

/BlendDesignPositions [[000][010][100][1 1 0]
[001][011][2101][111]]def

While the elative oder of the design axesespecified in this document, the
order of the master designs is not. However, it is imperative that the order of
the master designs specifiedBiendDesignPositions , the order of the

WeightV ector values, the ater of the charstring gguments, and the configu-
ration of theNormalizeDesignVector andConvertDesignVector proce-

dures must all correspond, or unexpected results will occur.

BlendDesignMap

BlendDesignMap (Required.) is an entry consisting of an array afrays
wheren is the dimensionality of the design space. Each array comtesob-
arrays that specify the mapping of design coordinates into blend coordinates
for each axis.

The data for the coordinate mapping for BendDesignMap keyword is of
the form:

[[DlB]]---[DmBm]]Al---[[DlBl]---[DmBm]]An

whereD, andB; are the lower limits of the design and blend coordinate
range, respectively; arigl,, andB,,, are the upper limits of the design and
blend coordinate ranges. The subschiptiesignates the mapping data for
the first axis, andn represents the mapping data for the last axis ofaatis

(15 Jan 94)

3.6

makeblendedfont

font. The subscripi represents the number of points defining the mapping
from design to blend coordinates. The minimum value allowethigrtwo

(for a linear mapping), and the maximum is twelve. Also, the valua foay

be different for each axis. The order of the subarrays must correspond to the
order of design axes BlendAxisTypes .

Example 2 illustrates the values of a sanBi@dDesignMap for a font with
three axesWeight with design coordinates from 200 to 99@idth, with
design coordinates from 300 to 700; &ticalSizewith design coordinates
from 6 (point) to 72.

Example 2:

/BlendDesignMap [[[200 0] [500 .5] [900 1]] [[300 0] [700 1]]
[[60][11.5][721]]

This capability for piecewise linear mapping of the coordinate range is partic-
ularly important for achieving optimal results for @eticalSizeaxis. To be
optically correct, small changes in design coordinates, such as changing from
6- to 8-point, requires significantly more change in the blend coordinates
(and hence in the shape of the glyph) than does a change from 66- to
68-point. Without this capability, at least one additional intermediate master
design would have to be included in the font.

The makeblendedfont Procedure

— blendedfontdict weightvector makeblendedfont blendedfontdict” —

This operator creates a font dictionary with pre-interpolated entries. The
blendedfontdict argument is a font dictionary of an existing multiple master
font; it can be from either the original multiple master font itself, or from an
interpolated font instance since aBlgnd dictionary contains all elements
needed to derive additional font instances.

The weightvector agument is an array of numbers summing to 1.0 to be used
as the weighting values for interpolating the new font instance. The value of
WeightVector in blendedfontdict” is set to the values in the arnagightvec-

tor. Interpolated values are calculated for entries irPthvate andFontinfo
dictionaries. The result is a font dictionary that can be used agument to
definefont . The resulting dictionary and its contents will still haead-write
permission, so the caller ofakeblendedfont can make further modifica-

tions if necessary (such as assigningnauelD). Thismakeblendedfont

operator or procedure will not copyDs, UniquelD s, orXulIDs.

For backward compatibilifythe downloadable file for a multiple master type-
face must include conditional code (shown in Apperdiwhich will check

for an existing definition ahakeblendedfont in eithersystemdict , shared-

dict oruserdict , and only if none exists will it store a new definition in

3 Multiple Master Font Extensions 19

3.7

shareddict oruserdict . If a definition already exists, the font program will
reclaim the storage of its own definition by ussage/restore and use the
existing version (unless the downloaded font has a newer version number
than the existing font).

TheBlend dictionary data structures provide the information needed by the
makeblendedfont procedure. This makes it unnecessary to haveahke-
blendedfont procedure contain a list of entries to be interpolated, which
means that the procedure can be used in the future, even if the set of entries to
be interpolated varies in future fonts.

The Multiple Master findfont Procedure

Multiple master font programs from Adobe Systems include a procedure
which will alter the behavior of thiindfont operator irsystemdict . For

Level 1 interpreterdindfont is redefined with a new definition in another
dictionary In Level 2 interpreters, tiéndResource procedure is replaced in

the Font resource category implementation. This is necessary because of the
need to generate font instances on-the-fly to satisfy multiple master font ref-
erences in a PostScript language document.

The code for the multiple master version offihéfont operator is available
from the Adobe Developers Association. Adobe Systems grants permission
to use this code as long as the code is not altered and the copyright notice
remains intact.

The procedure creates all necessary font instances before it calls the standard
findfont procedure. These instances are only created if the font name con-
forms to the naming conventions for a multiple master font. The design coor-
dinates must be separated from the family and style nameunydanscore
character; there must be a numeric design coordinate for each axis in the font,
and these coordinates must be separated by non-numeric characters. For
more information on multiple master font names, see Adobe Technical Note
#5088," Font Naming Issues.”

In the situation where a multiple master font has been downloaded to a print-
er’s hard disk, the alternafiedfont may not be instantiated when a job refer-
encing multiple master font instances is being interpreted. The solution is to
have aSys/Starfile containing theindfont definition on the hard disk. The
interpreter executes ti8ys/Starfile upon startup, thus ensuring that the nec-
essaryfindfont is defined.

An example of a call téndfont might look like:

MyriadMM_367wd_450wt findfont

(15 Jan 94)

3.8

3.9

The redefinedindfont procedure parses the name and callNtheal-
izeDesignVector procedure (see below) to convert the design coordinates in
theFontName into normalized coordinates. It then catlsnvertDesignV ec-

tor (see below) to convert these imightVector values for use as argu-
ments for callingnakeblendedfont , which leaves the font dictionary of the
font instance on the stack.

The NormalizeDesignVector Procedure

— dq...d, NormalizeDesignVector ncq...ncy —

NormalizeDesignVector is a procedure that must be included in a multiple
master font program; it is used by ftivgifont procedure to calculate the nor-
malized equivalent of the design coordinates irFthreName . If the values

in theBlendDesignMap array for a particular axis indicate that the mapping

is non-linear, the normalized values must be found by piecewise linear inter-
polation of the design coordinates using the appropriate segment of the map.

The normalized coordinates; through nc,, are left on the stack for use by

the ConvertDesignVector procedure. The code for this procedure must be
configured for the number of axes and master designs in the font program in
which they are used. Sample code for a representative multiple master font is
shown in Appendix C.

The ConvertDesignVector Procedure

— ncyp ...nc, ConvertDesignVector Vi ...Vy —

ConvertDesignVector is a required procedure that takes the normalized
coordinatesic, through nc,, left on the stack by thieormalizeDesignVec-

tor, and generates/eightVector valuesv; . ..V by a simple linear weight-
ing with the following properties (see Figure 3 for illustration of the design
space):

» TheWeightVector value for any master design is O (zero) when the
instance is another master design (for example, the instance is at another
corner of the design space).

» TheWeightVector value for any master design is 1 when the instance is
that master design.

* When the instance is in the middle of the design space, all master fonts
contribute equally.

3 Multiple Master Font Extensions 21

The code for this procedure must be configured for the number of axes and
master designs in the font program in which they are used. Appendix D
shows an example of the necessary calculations for a sample multiple master
font as well as an example of the code that would be included in the font.

3.10 Multiple Master Font Names

The PostScript languadg@®ntName and the font menu name of multiple

master fonts require special attention, both for compatibility reasons and to
standardize the meaning of design coordinates in order to benefit users, soft-
ware applications, and utilities. See Technical Note #5088, “Font Naming
Issues” for more information on multiple master font names.

3.11 Multiple Master Charstring Representation

The encoded and encrypted data in the charstring procedurgstasdarray
entries contain the raw (not interpolated) data from each &fritester
designs, along with calls to tiggherSubrs procedures used for multiple
master interpolation (see following section@iherSubrs). Each glyph in

each master design must be represented by an identical sequence of com-
mands. The different master designs can differ only in numerical values for
their arguments. For example, if the first command in each path for a given
glyph in a single Type 1 font is

dxdy rmoveto
then the first command for that glyph in a multiple master font would be

dx;dy ;(dx ,—dxy)... (dx —ax) (@y »—dy)..(dy «—ay 1) 15 callsubr
rmoveto

wheredx anddy; are the values from thé inaster design.

Note Inthe above example, as well as ones that follow, expressions such as
(dx ,—dx,;) are a symbolic representation of what must be encoded in the char-
string procedure. The Type 1 BuildChar interpreter cannot interpret such an
arithmetic expession, it is the diffence betweetx, anddx, that is encoded.

This format makes it possible to use the same charstringsuan for all
font instances derived from the multiple master font. In this examiile, 2
values are put on the stack, éubrs entry 15 call©therSubrs entry 15
which calculates the weighted average for both dx and dy, usingeibet-
Vector. This call returns the interpolated valuegsiefanddy on the stack;
these values are then used as argumemnisdeeto .

(15 Jan 94)

3.12

Note

Since the font interpreter stack is limited to 24 entries, font programs with
four axes may need to call the interpolation procedures in a way that avoids
too many elements accumulating on the stack. The limit is effectively 22
items on the stack sincallothersubr requires two arguments to pass the
Subrs entry number and the number of arguments.

For example, thecurveto operator requires six arguments. If the font has
four master designs, thénherSubrs entry 18 cannot be used and the set of
arguments must be split into two calls. One way to do this is by calting
erSubrs entry 16 twice. In the following example, if there knmaster
designs, there will ble sets of:

abcdef

to be interpolated for eactturveto operatorlf k = 4, there would be 26 ele-
ments on the stack (including the two extra arguments mentioned above). If
these aguments were divided into two calls@herSubrs entry 16, each of
which returns three results, the code would look like:

ajbic @ gyag.@ pagb by.b bl cylc €1
16 callsubr

die f 1 (d ydy).d pdi)le zep.le pe) f).(f ,f2)
16 callsubr rrcurveto

In this exampleSubrs entry 16 is used to calitherSubrs entry 16 as a
means of saving space.

OtherSubrs for Multiple Master Font Programs

There are five new entries in théherSubrs array which are used by multi-
ple master font programs to compute weighted averages usingidie-
Vector. The new entries are numbered 14 through 18, so the necessary
number of procedure brackets (“{ }") must be inserted in the array to fill
unused positions.

OtherSubrs 14 through 18 consist of PostScript language code whose only
purpose is to reorder the arguments on the stack before callifBl¢he
procedure (discussed in section 3.4) to interpolate those arguments. These
routines difer only in the number of results they return. Each must be config-
ured to manipulate the expected number of elements on the stack, which is
dependent on the number of master designs, so that they are in the correct
order for calling theBlend procedure.

There is no requirement for the number 8fibars procedure to correspond
to the number used for atherSubrs procedure.

In the summary obtherSubrs calls listed belowk is the length of the

WeightVector array (and hence the number of master designs in the font).
The charstrings anslubrs will call the appropriat©therSubrs to create the

3 Multiple Master Font Extensions 23

24

required weighted averages for various parameters. The font interpreter stack
is limited to 24 entries, which includes the arguments used to indicate the
OtherSubrs entry number and the number ofjaments being passed. There-
fore, some of th&therSubrs entries may only be useful with fonts having a
small value ok.

TheOtherSubrs for multiple master fonts are numbered 14 through 18; the
calling sequences are shown below. In each &dsehe number of master
designs in the font (The maximum valuekdbr any font is 16.). Each of the
following descriptions uses a notation of the form:

aj; (ap—ajp) (az—ap) (ag—ap) ... (axk—ajz) 14 callsubr a

which indicates the form of the invocation in a charstring. This is the form in
which the values for each master design are represented in the font program,
with & being the character coordinate value for the first master design, and
all subsequent values are expressatt#asrelative to the first valu&ubrs

entry 14 puts the gument count on the stack and caltserSubrs entry 14

(see section 3.13), which arranges the elements on the PostScript language
stack and calls th&Blend procedure to calculate the weighted average of the
input values. In each example, the number of items left on the stack is indi-
cated by the characters to the right of the arrow.

OtherSubrs 14: Input: k values; Result: 1 value
a; (a»—ap) (az—ay) (a4—ay) ... (@x—as) Subr# callsubr a

whereSubr# is the index of th&ubrs entry that call©therSubrs entry 14.
Entry 14 usesVeightVector values to form a weighted averagekafalues
from the stack. The results are pushed onto the stack. The vadisefotind
from the length of th&veightVector array.

OtherSubrs 15: Input: k x 2 values; Results: 2 values

a; by (a-ay) (az-ay) (a-ay)... (a-ay) (b=by) (b3—by) (bs~by)..
(bx—b;) Subr# callsubr a b

whereSubr# is the index of th&ubrs entry that call®©therSubrs entry 15.
Entry 15 usesVeightVector values to form two weighted averages, one for
the ‘a’ values and the other for the ‘b’ values indicated in the pseudo code
above.

OtherSubrs 16: Input: k x 3 values; Results: 3 values

asb;cy (@—ayp) ... @—az) (bo—>by) ... (by—b1) (co—cy) ... (Ck—C7)
Subr# callsubr a b ¢

whereSubr# is the index of th&ubrs entry that call©therSubrs entry 16.
Entry 16 use$VeightVector values to form three weighted averages.

(15 Jan 94)

Note

Note

3.13

OtherSubrs 17: Input: k x 4 values; results: 4 values

a; by c;dp (@r—ay) ... (@k—ay) (bo—by) ... (by—by) (co—cy) ... (ck—c1) (dr—dy)
... (dg—dyp) Subr# callsubr a b ¢ d

whereSubr# is the index of th&ubrs entry that call©therSubrs entry 17.
Entry 17 use#veightVector values to form four weighted averages.

OtherSubr 18: Input: k x 6 values; Results: 6 values

ai bl Cq1 dl e fl (32—31) (ak—al) (bz—bl) (bk_bl) ((,‘2—01) (Ck—Cl)
(do—dy) ... (d—d7) (ex—eyq) ... (ex—ey1) (fo—11) ... (fk—F;) Subr# callsubr a b
cdef

whereSubr# is the index of th&ubrs entry that call©therSubrs entry 18.
Entry 18 usesVeightVector values to form six weighted averages.

Some PostScript interpreters fail to execute the PostScript language
OtherSubrs procedures. This is incorrect behaviour. This primarily affects
the Apple Personal LaserWrifeNT and the Hewlett-Packafd_evel 1
PostScript Cartridge for LaserJ®printers. The likely consequence is that an
invalidfont error will occur, the fonts will not appear on the page, or the
interpreter will fail.

Sample Subrs Code for Calling OtherSubrs Procedures

Since the charstring encoding fosabrs call is shorter than that for &nh-
erSubrs call, use oSubrs to callOtherSubrs may make a Type 1 font pro-
gram more concise. The followirBybrs are examples of subroutines which
may be used to calitherSubrs entries 14 through 18. These are only
selected examples; additional subroutines must be appropriately configured
for the number of master designs in the font. The number of arguments
expected by the charstring command determines v@tigdrSubrs is called.

For example, if a font has four master designs, and it is necessary to interpo-
late arguments for anlineto command which expects a single argument on
the stackptherSubrs entry 14 would be called inSubrs entry with the fol-
lowing code:

4 14 callothersubr pop return

In this example, the firstgmument indicates that there are fouguanents (as
shown in section 3.12) being passe®tioerSubrs entry 14. If there were
eight masters, the code would be:

8 14 callothersubr pop return

3 Multiple Master Font Extensions 25

26

To interpolate multiple master charstring arguments, in a font with four
master designs, for arcurveto command which expects six arguments, it
might be guessed that tBabrs would use the following code:

24 18 callothersubr pop pop pop pop pop pop return

However, the result of this code would exceed the stack limit of 24 elements
since there are 24 arguments being put on the stack in addition to the two
given as arguments to thellothersubr command. The solution is to make
two calls toOtherSubrs entry 16, each of which produces 3 results.

Recall that the gluments for entry 18 (as originally planned) would be set up
as follows:

ajbjc die; fi@raj@ gagd@ gFal) b)) sb)® 4#b)c ¢y
(cac)lc 4c)d d){d sd)(d ,di)(e e)(e sze)e rez)(frfy)
(Fsf) 41 1)

These must be reorganized for the call to look like:

ajb;ci(@zag)@ zaj)@ gag) b)) sb)(b 4#by)(c c)c szc3)
(c 4-¢ 1) Subr# callsubr

die f(dydy)d d){d 4di)e ,ez)e zej)le e f)E 3F)
(f 4-f ;) Subr# callsubr

where thesubrs procedure indicated ubr# would contain:
12 16 callothersubr pop pop pop return

Again, the stack may never have more than 24 elements. This must be consid-
ered when breaking up the calls, as in the above example, where the interme-
diate results are left on the stack. Also, while making subroutines to conserve
space is encouraged, the cumulative effect on stack contents must be care-
fully controlled.

Adobe Type Manager Compatibility
The following are compatibility issues related to multiple master fonts:

» TheBlend dictionary must come after everything in the font dictionary for
which blended values can be calculated.

* The keyword®lendDesignPositions , BlendDesignMap , and
BlendAxisTypes must be defined before tBé&end dictionary.

» ThePrivate blend dictionary must appear after all elements oPthate
dictionary for which blended values can be calculated.

(15 Jan 94)

5

Note

Font Program Testing

Over time, several Type 1 font program interpreters have been developed,
including those in PostScript printers, Adobe Type Manager software, and
the Type 1 Coprocessor (an ASIC chip). All of these accept any Type 1 font
program which conforms to the Type 1 specification, but they differ in how
they handle non-conforming font programs. In particular, ATM software is
stricter than the PostScript interpreter, and the Type 1 Coprocessor is stricter
still. When developing Type 1 font programs, it is wise to test with the fol-
lowing: a Level 1 PostScript printer, a Level 2 PostScript printer with and
without a Type 1 Coprocessor, and a later version of ATM software (prefera-
bly one shipped with the SuperATM™ or Adobe Acrobat™ software). For
East Asian fonts, testing should include the above plus a Level 1 Japane-
se-enabled printer.

An example of the range of charstring character space coordinates allowed
in different implementations is that the Type 1 specification limit is 2000,
but the Type 1 Coprocessor chip supports 4095, while A TM software sup-
ports 8191.

Errata

The following errors occur in versions 1.0 and 1.1 of tygeTl Font Format
book:

* There is an error in the sample Type 1 font program code shown in
Example 1 on page 11. The hex code which follows#xec operator
cannot be decrypted into a meanindftilate dictionary, and hence
should not be used as a test case for developing a decryption procedure.
The correckexec hex code for the beginning of the Symbol font is:

a8686bfddf470dd119f86e1b8e5b290ae7d910e9317a36f6768d8de89e7ed5b8
45166db0el18e3fca77c6e789f2ac61e3ba2248c0c4ccdb4c503448893c2a909¢
36546b763088822eb34d1051d0ac662d8098db11f0a527a679e4ac03347df431
9a689d7d65239e8502b5dh9aefd4cdbeebd07cee5af22db4c8c628a982cdd10

» The description of theeac operator in paragraph 6.4 of versions 1.0 and
1.1 contains an error in the description ofdke andady arguments. The
existing text describes the offset as being the distance between the origin
points of the base and accent character; it shouldtheaaffset of the left
sidebearing points

5 Font Program Testing 27

28

(15 Jan 94)

Note

Appendix A: The
makeblendedfont Operator

The following code is the definition of theakeblendedfont operatorlt has
been updated since it was published in Adobe Technical Note #5086, “Multi-
ple Master Extensions to the Adobe Type 1 Font Format.”

This code, as well as the code in the following appendices, is copyrighted by
Adobe Systems Incorporated, and may not be reproduced except by permis-
sion of Adobe Systems Incorporated. Adobe Systems Incorporated grants
permission to use this code in Type 1 font programs, as long as the code is
used as it appears in this document, the copyright notice remains intact, and
the character outline code included in such a font program is neither copied
nor derived from character outline code in any Adobe Systems font program.

% Copyright (c) 1990-1994 Adobe Systems Incorporated.
% All Rights Reserved.
% This code to be used for Flex and hint replacement.
% Version 11

/shareddict where

{ pop currentshared { setshared } true setshared
shareddict }

{ {} userdict } ifelse dup

/makeblendedfont where {/{makeblendedfont get dup type /
operatortype eq {

pop false} { O get dup type /integertype ne

{pop false} {11 It} ifelse} ifelse } {truelifelse

{/makeblendedfont {

11 pop

2 copy length exch /WeightVector get length eq

{ dup 0 exch {add} forall 1 sub abs .001 gt }

{true } ifelse

{/makeblendedfont cvx errordict /rangecheck get exec }
if

exch dup dup maxlength dict begin {

false {/FID /UniquelD /XUID } { 3 index eq or } forall

{ pop pop } { def } ifelse

} forall

/XUID 2 copy known{

get dup length 2 index length sub dup 0 gt{

29

exch dup length array copy

exch 2 index{65536 mul cvi 3 copy put pop 1 add}forall
pop/XUID exch def

Hpop poplifelse

Hpop poplifelse
{ /Private /Fontinfo } {

dup load dup maxlength dict begin {
false { /UniquelD /XUID } { 3 index eq or } forall
{ pop pop K def } ifelse } forall currentdict end def
} forall
dup /WeightVector exch def
dup /$Blend exch [
exch false exch
dup length 1 sub -1 1 {
1 index dup length 3 -1 roll sub get
dup O eq {
pop 1 index {/exch load 3 1 roll} if
/pop load 3 1 roll
}{dup 1 eq {pop}
{2 index {/exch load 4 1 roll} if
3 1 roll /mul load 3 1 roll } ifelse
1 index {/add load 3 1 roll} if
exch pop true exch} ifelse
} for
pop { /add load } if
] cvx def
{2 copy length exch length ne {{makeblendedfont cvx er-
rordict /typecheck get exec}if
00 1 3 index length 1 sub {
dup 4 index exch get exch 3 index exch get mul add
} for
exch pop exch pop}
{{dup type dup dup /arraytype eq exch /packedarraytype
eq or {
pop 1 index /ForceBold eq {
5index 0 0 1 3 index length 1 sub {
dup 4 index exch get {2 index exch get add } {pop} if-
else
} for exch pop exch pop
2 index /ForceBoldThreshold get gt 3 copy} {
{length 1 index length ne { pop false } {
true exch { type dup /integertype eq exch /realtype eq
exch or and } forall
} ifelse }
2 copy 8 index exch exec {pop 5 index 5 index exec}
{exch dup length array 1 index xcheck { cvx } if
dup length 1 sub 0 exch 1 exch {
dup 3 index exch get dup type dup /arraytype eq exch /
packedarraytype eq or {
dup 10 index 6 index exec {
9 index exch 9 index exec} if } if 2 index 3 1 roll put

30 Appendix A: The makeblendedfont Operator (15 Jan 94)

} for exch pop exch pop

} ifelse 3 copy

1 index dup /StemSnapH eq exch /StemSnapV eq or {
dup length 1 sub {dup O le { exit } if

dup dup 1 sub 3 index exch get exch 3 index exch get 2

copy eq {
pop 2 index 2 index 0 put 0 } if le {1 sub}
{dup dup 1 sub 3 index exch get exch 3 index exch get
3 index exch 3 index 1 sub exch put
3 copy put pop
2 copy exch length 1 sub It {1 add} if} ifelse} loop
pop
dup O get O le {
dup 0 exch {0 gt { exit } if 1 add} forall
dup 2 index length exch sub getinterval} if } if } ife-
Ise put}
{/dicttype eq {6 copy 3 1 roll get exch 2 index exec}
{/makeblendedfont cvx errordict /typecheck get exec}
ifelse
} ifelse pop pop } forall pop pop pop pop }
currentdict Blend 2 index exec
currentdict end
} bind put
/$fbf {FontDirectory counttomark 3 add -1 roll known {
cleartomark pop findfont}{
] exch findfont exch makeblendedfont
dup /Encoding currentfont /Encoding get put definefont
} ifelse currentfont /ScaleMatrix get makefont setfont
} bind put } { pop pop } ifelse exec

31

32 Appendix A: The makeblendedfont Operator (15 Jan 94)

Appendix B: Updated
OtherSubrs Code for Flex
and Hint Substitution

The code in this appendix is the updated code for flex and hint substitution;
this code appeared iresion 1.1 of the Adobeype 1 Font Format Book, but
is included here for readers having only Version 1.0.

% Copyright (c) 1987-1990 Adobe Systems Incorporated.
% All Rights Reserved.

% This code to be used for Flex and hint replacement.
% Version 1.1

/OtherSubrs

[systemdict /internaldict known

{1183615869 systemdict /internaldict get exec
[FIxProc known {save true} {false} ifelse}
{userdict /internaldict known not {

userdict /internaldict

{count0 eq

{/internaldict errordict /invalidaccess get exec} if
dup type /integertype ne

{/internaldict errordict /invalidaccess get exec} if
dup 1183615869 eq

{pop O}

{/internaldict errordict /invalidaccess get exec}
ifelse

}

dup 14 get 1 25 dict put

bind executeonly put

}if

1183615869 userdict /internaldict get exec
/FIxProc known {save true} {false} ifelse}

ifelse

[

systemdict /internaldict known not

{100 dict /begin cvx /mtx matrix /def cvx } if
systemdict /currentpacking known {currentpacking true setpacking} if
{

systemdict /internaldict known {

1183615869 systemdict /internaldict get exec
dup /$FIxDict known not {

dup dup length exch maxlength eq

{ pop userdict dup /$FIxDict known not

{ 100 dict begin /mtx matrix def

dup /$FIxDict currentdict put end } if }
{100 dict begin /mtx matrix def

33

dup /$FIxDict currentdict put end }

ifelse

}if

/$FIxDict get begin

}if

grestore

/exdef {exch def} def

/dmin exch abs 100 div def

lepX exdef lepY exdef

Ic4y?2 exdef Ic4x2 exdef /cdyl exdef /c4x1 exdef /c4y0 exdef /c4x0
exdef

Ic3y2 exdef /c3x2 exdef /c3yl exdef /c3x1 exdef /c3y0 exdef /c3x0
exdef

Icly?2 exdef /c1x2 exdef /c2x2 c4x2 def /c2y2 c4y2 def
lyflag cly2 c3y2 sub abs c1x2 c3x2 sub abs gt def
/PickCoords {

{c1x0 c1y0 c1x1 clyl c1x2 cly2 c2x0 c2y0 c2x1 c2yl c2x2 c2y2 }
{c3x0 c3y0 c3x1 c3y1 c3x2 c3y2 ¢4x0 c4y0 cdx1 cdyl c4x2 cdy2 }
ifelse

ly5 exdef /x5 exdef /y4 exdef /x4 exdef /y3 exdef /x3 exdef
ly2 exdef /x2 exdef /y1 exdef /x1 exdef /y0 exdef /x0 exdef
} def

mitx currentmatrix pop

mtx 0 get abs .00001 It mtx 3 get abs .00001 It or

{MlipXY -1 def}

{mtx 1 get abs .00001 It mtx 2 get abs .00001 It or

{lipXY 1 def}

{lipXY O def}

ifelse }

ifelse

ferosion 1 def

systemdict /internaldict known {

1183615869 systemdict /internaldict get exec dup
[erosion known

{lerosion get /erosion exch def}

{pop}

ifelse

}if

yflag

{flipXY 0 eq c3y2 c4y2 eq or

{false PickCoords }

{/shrink c3y2 c4y2 eq

{OKcly2 c4y2 sub c3y2 c4y?2 sub div abs} ifelse def
lyshrink {c4y2 sub shrink mul c4y2 add} def

/c1y0 c3y0 yshrink def /c1y1 c3y1 yshrink def

/c2y0 c4y0 yshrink def /c2y1 c4y1 yshrink def

/c1x0 c3x0 def /c1x1 c3x1 def /c2x0 c4x0 def /c2x1 c4x1 def
/dY 0 c3y2 cly2 sub round

dtransform flipXY 1 eq {exch} if pop abs def

dY dmin It PickCoords

y2 cly2 sub abs 0.001 gt {

c1x2 cl1y?2 transform flipXY 1 eq {exch} if

/cx exch def /cy exch def

/dY 0y2 c1y2 sub round dtransform flipXY 1 eq {exch}

if pop def

dY round dup 0 ne

{/dY exdef}

{pop dY O It {-1X1} ifelse /dY exdef }

34 Appendix B: Updated OtherSubrs Code for Flex and Hint Substitution

(15 Jan 94)

ifelse

lerode PaintType 2 ne erosion 0.5 ge and def
erode {/cy cy 0.5 sub def} if

ley cy dY add def

ley ey ceiling ey sub ey floor add def

erode {/ey ey 0.5 add def} if

ey cx flipXY 1 eq {exch} if itransform exch pop
y2 sub /eShift exch def

Iyl y1 eShift add def /y2 y2 eShift add def /y3 y3
eShift add def

}if

}ifelse

}

{flipXY 0 eq c3x2 c4x2 eq or

{false PickCoords }

{/shrink c3x2 c4x2 eq

{0Kc1x2 c4x2 sub c3x2 c4x2 sub div abs} ifelse def
Ixshrink {c4x2 sub shrink mul c4x2 add} def
/c1x0 ¢3x0 xshrink def /c1x1 ¢3x1 xshrink def
/c2x0 ¢4x0 xshrink def /c2x1 c4x1 xshrink def
/c1y0 c3y0 def /clyl c3y1l def /c2y0 c4y0 def /c2yl cdyl def
/dX ¢3x2 c1x2 sub round O dtransform

flipXY -1 eq {exch} if pop abs def

dX dmin It PickCoords

X2 ¢1x2 sub abs 0.001 gt {

c1x2 c1y?2 transform flipXY -1 eq {exch} if

Icy exch def /cx exch def

/dX x2 ¢1x2 sub round O dtransform flipXY -1 eq {exch} if pop def
dX round dup 0 ne

{/dX exdef }

{pop dX O It {-1X1} ifelse /dX exdef }

ifelse

lerode PaintType 2 ne erosion .5 ge and def
erode {/cx cx .5 sub def} if

/ex cx dX add def

/ex ex ceiling ex sub ex floor add def

erode {/ex ex .5 add def} if

ex cy flipXY -1 eq {exch} if itransform pop

X2 sub /eShift exch def

Ix1 x1 eShift add def /x2 x2 eShift add def /x3 x3 eShift add def
}if

}ifelse

}ifelse

x2 x5 eqy2y5eqor

{x5y5 lineto }

{x0y0 x1 y1 x2 y2 curveto

x3y3 x4 y4 x5 y5 curveto }

ifelse

epY epX

}

systemdict /currentpacking known {exch setpacking} if
/exec cvx /end cvx] cvx

executeonly

exch

{pop true exch restore}

{

systemdict /internaldict known not

{1183615869 userdict /internaldict get exec

35

36

exch /FIxProc exch put true}

{1183615869 systemdict /internaldict get exec

dup length exch maxlength eq

{false}

{1183615869 systemdict /internaldict get exec

exch /FIxProc exch put true}

ifelse}

ifelse}

ifelse

{systemdict /internaldict known

{{1183615869 systemdict /internaldict get exec /FIxProc get exec}}
{{1183615869 userdict /internaldict get exec /FIxProc get exec}}
ifelse executeonly

}if

{gsave currentpoint newpath moveto} executeonly
{currentpoint grestore gsave currentpoint newpath moveto}
executeonly

{systemdict /internaldict known not

{pop 3}

{1183615869 systemdict /internaldict get exec

dup /startlock known

{/startlock get exec}

{dup /strtick known

{/strtick get exec}

{pop 3}

ifelse}

ifelse}

ifelse

} executeonly

] noaccess def

Appendix B: Updated OtherSubrs Code for Flex and Hint Substitution

(15 Jan 94)

Appendix C:
NormalizeDesignVector
Example

The NormalizeDesignVector procedure is used by tfiadfont procedure
defined in a multiple master font to convert the design coordinates in a font
name to normalized values. The results are left on the stack footkert-
DesignVector procedure. Th&lormalizeDesignVector procedure must be
configured for the number of axes and master designs contained in the spe-
cific font it is used in.

The following sample procedure is from the Minion™ multiple master font
and is configured for Minion’s 3 axes and 8 master designs:

/NormalizeDesignVector {

3 2 roll 345 sub 275 div

3 2 roll 450 sub 150 div

32rolldup 11 le { dup 8 le { 6 sub 5.71429 div }

{1sub20div} ifelse }
{dup 18 le { -3 sub 28 div } { -144 sub 216 div } ifelse } ifelse }
bind def

This procedure expects the design coordinates for a font instance to be on the
stack (as shown in section 3.8) and calculates the normalized value of the
coordinate. For example, a weight axis value of 530 design coordinate units
is 185/275 = 0.6727 units when normalized for an axis ranging from 345 to
620 units (total dynamic range is 275 units).

The third axisOptical Sizehas &BlendDesignMap value of
[6 O][8 0.35][11 0.50][18 0.75][72 1]

which specifies four piecewise linear segments which define the mapping
from design to blend coordinates. The above code checks which segment the
design coordinate corresponds to and calculates the normalized coordinate
from the equation for the appropriate line segment.

37

38 Appendix C: NormalizeDesignVector Example (15 Jan 94)

Appendix D:
ConvertDesignVector
Example

The ConvertDesignVector procedure is used by tfiedfont procedure

defined in a multiple master font to convert the normalized coordinates (left
on the stack by theormalizeDesignVector procedure) taVeightVector

array values. TheveightVector values are left on the stack for use with the
makeblendedfont procedure. Th€onvertDesignV ector procedure must be
configured for the number of axes and master designs contained in the spe-
cific font it is used in.

For example, th€onvertDesignVector procedure, as configured for the
MyriadMM font’s 2 axes and 4 master designs, is:

/ConvertDesignVector {

12 index sub 1 2 index sub mul 3 1 roll
1lindex 1 2 index sub mul 3 1 roll

1 2 index sub 1 index mul 3 1 roll
1lindex 1 index mul 3 1 roll

Ppop pop

} bind def

This code expects the normalized blend coordinates on the stack and calcu-
lates theweightVector values which specify the weighting for each master
design for the particular font instance. This calculation obeys the rules for the
simple linear weighting expressed in section 3.9. For the Myriad multilple
master font, the calculations are:

V1= (1-BGy) (1-BGy)
Vo= (BCAD)(1-BGyo)
V3= (1-BGy) (BCpo)
V4= (BCa1) (BCx2)

whereV, is thei value of theweightV ector array andBG; is the normalized
blend coordinate for th&" axis.

39

40 Appendix D: ConvertDesignVector Example (15 Jan 94)

Appendix E: Changes Made
In Version 1.1

Changes Made in Version 1.1

The following items are minor changes made in Version 1.1 of the specifica-
tion.

» The default values are clearly documented for the following entries in the
Private dictionary:BlueScale (0.039625, equivalent to 10 points at 300
dpi; in section 5.6 of version 1.®lueShift (7 character space units; in
section 5.7 of version 1.0BJueFuzz (1 character space unit; in section
5.8 of version 1.0), anéixpansionFactor (0.06, see section 2.5 in this
document).

* ExpansionFactor is a new (optional) entry to thrrivate dictionary,
which provides a font level hint useful for intelligent rendering of complex
glyphs with more stems than the usual Latin font. Examples would include
Chinese and Japanese language fonts, as well as bar code and logo fonts.
See section 2.5 in this document.

* Awarning was added to the description ofdlveepath operator (section
6.4 of version 1.1) about usie@psepath to form a subpath section
intended to be zero length. If the subpath section is intended to be zero
length but is not, thelosepath operator might cause a “spike” (if the sub-
path doubles back onto itself) in the path, of zero width, that might pro-
duce unexpected results.

» Regarding compatibility with Adobe Type Manager software (in section
10.3 of version 1.0), version 1.1 explains that the parser skips to the first
dup token afteEncoding to find the first character encoding assignment.

» The PostScript language program definingriee procedure has been
modified to protect against trying to put $f@xDict into internaldict if
internaldict is full. The old code could lead tictfull errors out ofhow
in certain unlikely circumstances. The new code put$heict in user-
dict if internaldict is full. (The new code is given in Appendix C).

41

42 Appendix E: Changes Made in Version 1.1 (15 Jan 94)

Index

B M
Blend dictionary 26 multiple master 9-26
BlendAxisTypes 17 ATM compatibility 26
BlendDesignMap 18, 21 blend coordinates 10
BlendDesignPositions 17 Blend dictionary
Fontinfo 13
C Private 12
design axes 9
ConvertDesignV ector procedure design coordinates 10
21 design space 9-11
Counter Control findfont procedure 20
example 7 font dictionaries 12
ExpansionFactor 6 font instance specification 9
groups 2 keywords 17-22
groups, definition 6 makeblendedfont 19, 29-31
OtherSubrs 3 master designs 9
prioritizing 6 OtherSubrs 22-25
Counter Control hint mechanisr, 2 Private dictionary 12
sample font program explanation
E 14-17
Subrs 22-23

ExpansionFactor 6

N

NormalizeDesignVector
procedure 21

F

FontBBox 16
Fontinfo 9, 12, 15
FontMatrix 16

O

H OtherSubrs
code listing for Flex and Hint

hex code error 27 2
Substitution 33

L

LanguageGroup 2, 3

P

Private dictionary 26
Private dictionary 2

43

R

RndStemUp 2, 3

S

seac 27

stack limit considerations for Counter
Control 5

T

Type 1 font format

changes

BlueFuzz 41
BlueScale 41
BlueShift 41
closepath 41
compatibility with ATM 41
ExpansionFactor 41
Flex 41

W

WeightVector 12

44 Index (15 Jan 94)

